Step of Proof: connex_iff_trichot
12,41
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
connex
iff
trichot
:
1.
T
: Type
2.
R
:
T
T
3.
a
,
b
:
T
. Dec(
R
(
a
,
b
))
4.
a
,
b
:
T
. (
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
R
(
a
,
b
) &
R
(
b
,
a
))
(
R
(
b
,
a
) & (
R
(
a
,
b
)))
5.
x
:
T
6.
y
:
T
R
(
x
,
y
)
R
(
y
,
x
)
latex
by (% This side doesn't need decidability %
((((InstHyp [
x
;
y
] 4)
(
CollapseTHENM (ProveProp))
)
(Co
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
(C
) inil_term)))
)
latex
(C
.
Definitions
t
T
,
P
Q
,
x
(
s1
,
s2
)
,
P
&
Q
,
x
:
A
.
B
(
x
)
,
origin